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1 Rain Streak Image Formation

In the main paper Eq.(2), we have explicitly express the image intensity with rain streaks
as:

Ĩ(x) = τ

∫
Ω

Ērs(x, λ)qc(λ)dλ+ (T − τ)

∫
Ω

Ebg(x, λ)qc(λ)dλ, (1)

Considering the model in Eq. 1, to be more explicit with the presence of the color and
intensity of the atmospheric light in the model, we define Ers(x, λ) = ρrs(x)L(λ)
and Ebg(x, λ) = ρbg(x, λ)L(λ), where L is the atmospheric light, ρrs is composed of
refraction, specular reflection, and internal reflection coefficients of a raindrop [6], and
ρbg is the reflectance of the background object. We assume that ρrs is independent from
wavelength, implying raindrop is achromatic (colorless). We also assume that L(λ),
which is dominated by the atmospheric light, is uniform across the scene. Focusing on
each of the terms of Eq. (1), we can write:

Ĩrs(x) = τρrs(x)

∫
Ω

L(λ)qc(λ)dλ = τρrs(x)L, (2)

Ĩbg(x) = (T − τ)

∫
Ω

ρbg(x, λ)L(λ)qc(λ)dλ = (T − τ)B, (3)

where L = (Lr, Lg, Lb)
T , which represents the light color vector, and B = (Br, Bg, Bb)

T

which represents the background color vector. Thus, Ĩ(x) = Ĩrs(x) + Ĩbg(x). Further-
more, using chromaticity, we can express the model as:

Ĩ(x) = τρrs(x)Lσ + (T − τ)Bπ, (4)

where σ = (σr, σg, σb)
T , π = (πr, πg, πb)

T are the chromacities of L and B, respec-
tively, L = Lr+Lb+Lg andB = Br+Bb+Bg . We define σ = L/L and π = B/B.
L and B represent, respectively, the brightness values of the light and reflection of the
background objects. Both of them are scalar values. Hence, we have obtained the rain
streak image formation as shown in Eq.(3) of the main paper.
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Fig. 1: (I, II, III) are the performance graphs of our method and baseline methods on
the synthesized driving dataset (a,b,c) respectively. (a): rain streaks only. (b): Rain ac-
cumulation effect only. (c): Both rain streaks and rain accumulation. (d-f): Comparison
between our method and baseline methods on synthesized driving dataset and real rain
sequence.

2 Ablation Study Details

In this supplementary material, we discuss our ablation study further. We denote our
algorithm with colored residue image component alone as Ours-residue, and with de-
composition component alone as Ours-decomp. The full version of our method is de-
noted as Ours.

Colored Residue Image vs. Rain Streak Density As mentioned in our main paper, the
colored residue image is independent from rain streaks, hence computing optical flow
based on it should be more robust compared to that of using the original input image. We
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rendered photorealistic rain streaks [7] with gradually increased density on the driving
sequences [12] (shown in 1(a)). We represent the density levels by the number of layers,
with more layers leading to a denser accumulation of rain streaks. The performance of
our algorithm and baseline methods are shown in 1(I). As can be seen the performance
of Our-residue is not affected too much by the rain streaks density. This experiment
shows that our algorithm is quite robust under rain streaks only scenario when using
colored residue image component alone.

Colored Residue Image vs. Rain Accumulation The performance of colored residue
image only may be degraded when there is strong fog-like rain accumulation, which
causes the scene to be low contrast and in turn makes the colored residue image pro-
duce dark regions. To study how the rain accumulation affects the performance of col-
ored residue image, we gradually increase synthesized fog-like rain accumulation with
additive white Gaussian noise (sigma = 0.2) on the sequence (shown in 1(b)). Using the
fog model: I(x) = α(x)B(x) + (1 − α(x))L(x), where α(x) = exp(−γd(x)), L is
the atmospheric light and B is the radiance of the background, α(x) is the transmit-
tance and d(x) is the distance of the object at point x. Employing the model, we adjust
γ ∈ [10, 100] to control the thickness of the rain accumulation effect (veiling effect).
The results are shown in 1(II).

Decomposition vs. Rain Severity To deal with loss of contrast due to heavy rain and ac-
cumulation, we propose the use of the structure and texture layers decomposition (Sect
3.2). We render gradually increased dense rain streaks [7] and noisy rain accumulation
together on the sequences (shown in Fig. 1(c)). As can be seen from the results in Fig.
1(III), our-decomp alone does not show improvement, since some rain streaks might
be considered as part of the structure layer that is used in the optical flow computation.
On the contrary, combining the colored-residue image and structure layer does help the
optical flow computation to be more robust under dense rain streaks and heavy rain
accumulation scenarios.

Fig. 1 (d)-(f) demonstrates the results of running our method with each component
inactivated on both synthesized and real rain sequences. As can be seen, the decomposi-
tion help Ours-residue improve over the regions (sky, near field road, remote tree) with
low contrast (compare Fig. 1(d, Ours-residue and Ours)), whereas residue image helps
Ours-decomp to filter out the effect of rain streaks in front of the bus and the raindrop
splash around the bus top area (compare Fig. 1(f, Ours-decomp and Ours)). One may
want to zoom in Fig. 1(e, Residue Image) to see that there is no rain streak left on the
bus. On the other hand, in (e) piecewise-smooth image, we can see the remote objects
clearly, although in the original rain image they suffer from low contrast issue due to
the heavy rain accumulation.

3 Details of FVR-660 Dataset Generation

Inspired by the Flying Chair dataset [5], we create a real rain dataset that can quantita-
tively evaluate our method. In generating the Flying Vehicle with Rain (FVR) dataset,
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Fig. 2: Examples of vehicle models used in FVR-660 dataset. Top: From left to right
are example of an image pair, and the vehicle models used to render on background
image. Bottom: From left to right are the rain background rendered with vehicles, and
the vehicles without/with applying rain streaks and rain accumulation.

we use 14 pairs of image of resolution 4032 x 3024 pixels as background. For fore-
ground objects, we use 24 vehicle models (3D) from Trimble TM, from which we cap-
ture 30 views: 15 azimuth angles (α) and 2 elevation angles (ψ). Hence, we create a
vehicle image set containing 720 samples. Examples of the vehicle models of differ-
ent views are shown in Fig. 2. In the FVR-660 dataset, to generate the first image of
an image pair, we randomly position (with uniform distribution) in the images multi-
ple vehicles randomly selected from the vehicle image set. The size of the vehicles are
sampled from a Gaussian with mean of 200 (pixel) and standard deviation 200, but with
the vehicle size limited in [50, 400] pixels. An example of the first image of an image
pair is shown in Fig 2(a).

To generate the second image in an image pair and the flow field, we apply 2D
Euclidean transformation independently on the vehicles and the background image. The
parameters of the translation vector (Tx, Ty) and rotation angle (θ) are sampled from a
family of a power of Gaussian following [5]. Let γ ∼ N (µ, σ) as a univariate Gaussian
parameter, the composed formula is expressed in Eq. (5).

ξ = max(min(sign(γ)|γ|k, b), a), (5)

We denote the distribution of ξ byG(k, µ, σ, a, b) and all transformation parameters are
sampled from this distribution with the parameters shown in Table 1.

After generating the second image and flow field, we will render the rain streaks
and rain accumulation on top of the vehicles. Here, we adopt state-of-the-art methods
[16] and [4] to extract rain streaks and fog-like rain accumulation effect respectively
from the background image and add them back on top of the vehicles. The rain streak
and fog rendered images are shown in Fig. 2. Then we cut each synthesized image
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Parameter k µ σ a b

Background Translation Tbx 4 0 2.3 -15 15
Background Translation Tby 4 0 2.3 -15 15

Vehicle Translation Tvx 3 0 2.3 -5 5
Vehicle Translation Tvy 3 0 2.3 -5 5
Vehicle Translation θv 2 0 2.3 -5 5

Table 1: The distribution of the transformation parameters.

pair into 49 smaller images of resolution 512 × 385 pixels each, and obtain 686 image
pairs in total. We manually remove those resultant images which only contains sky as
background because there is no texture on background image. As a result, this dataset
contains 660 real rain image pairs with optical flow ground truth. It is meant for al-
gorithm testing and evaluation in our experiments. Since this dataset is inspired by the
FlyingChair dataset [5], but we use vehicles instead of chairs, we call it ’Flying Vehicles
with Rain’ (FVR) dataset. However, similar to FlyingChairs, this dataset only contains
2D Euclidean motion, which may not fully represent real-world motions.

4 Details of X-100 Dataset Generation

This dataset contains 100 real rain sequences of different rain types and rain severity
levels, including heavy rain accumulation and rain streaks. In these sequences, we man-
ually delineated all moving objects (cars, trucks, buses, pedestrians, tree leaves, etc.) in
the scenes using the labeling tool provided by [11]. Among these objects, we only esti-
mated the motion ground truth for rigid bodies such as cars, buses and the scene back-
ground. Other moving objects are marked as ’invalid’ and are excluded in the optical
flow evaluation. To obtain reliable motion ground truths, we choose the semi-automatic
motion labelling scheme from [11] and select the ’affine mode’ to compute the motion
of the moving objects, given that these objects span a small field of view. The details
of creating this dataset can be found in the supplementary material. While this dataset
has some limitations, e.g., non-rigid body motion is ignored and human annotation may
come with errors, it offers the best ground truths that we can possibly obtain for real
rain and real motion.

5 Verification of Residue Channel Prior

To verify how good the residue channel is to reduce rain streaks for improved optical
flow estimation, we collect a set of outdoor images of rainy scenes and manually select
more than 514 images containing obvious rain streaks (shown in Fig. 3(a)). We crop
out rain streak regions with uniform textureless background from the selected rain im-
ages and resize them to patches of size 150px × 150px. (Fig. 3(b)). The corresponding
residue channels of these images and patches are computed as shown at the bottom
of Fig. 3. We then compute the variance of each image patch and the variance of its
corresponding residue channel. Fig. 3(d) demonstrates the variance histogram over all
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Fig. 3: (a) Collected rain images (top) and their corresponding residue channels (bot-
tom) (b) Cropped patches of regions with uniform background (top) and their corre-
sponding residue channels (bottom). (c) Top: Variance Histogram of the intensity of the
pixels in all 514 cropped patches. Bottom: Variance Histogram of the intensity of pixels
the corresponding 514 residue channels.

514 patches and their corresponding residue channels. Since the background of each
cropped patch is uniform and textureless, the intensity of its pixels should remain al-
most uniform, meaning the variance of the non-rain background should be very small.
As one can see that the patches’ residue channels are really dark and the variance is
significantly reduced. 88.91% of the residue patches have variance smaller than 50.
However, only 36.77% rain image patches have variance less than 50. This is a strong
support to our hypothesis that residue channel, even without color constancy step, is
able to significantly reduce the effect of rain streaks in optical flow estimation.

6 Algorithm Processing Speed

Table 2 shows the processing speed of our algorithm and competing methods. All the
methods are tested on an image pair of MPI Sintel dataset on a PC with Intel Core
i7-6850K CPU and NVIDIA GTX1080Ti GPU. As our method is developed based on
Horn-Schunck framework, the processing speed of our method is limited by the re-
quired iterative optimization and large matrix division. The residue image computation
and the piecewise fine-detail decomposition only added marginal computation load. In
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Table 2: A computation efficiency comparison of our algorithm with several top-
performing methods.

Method Run Time (s) Platform
DCFlow[15] 3.83 GPU
FlowNetS [5] 0.08 GPU

FlowNetS-Rain 0.08 GPU
FlowNet2 [9] 0.10 GPU

FlowNet2-Rain 0.10 GPU
SP-MBP [10] 34.83 C++
EpicFlow [13] 18.53 C++

Classic+NL-fast [14] 47.51 MATLAB
Classic+NL [14] 255.30 MATLAB

LDOF [1] 73.02 MATLAB
MirrorFlow [8] 1913.05 MATLAB

Ours 64.94 MATLAB

addition, a series of real-time implementation of this algorithm is available in the litera-
ture. [2][3]. The proposed method is able to be improved to a real-time implementation
as a future work.

7 Video

We enclosed two video files in this supplementary material package. One video demon-
strates the result of our algorithm performed on a couple of real rain long sequences.
The other compares our algorithm with a few baseline methods.
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