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1. Real Rain Results Comparison

We show the results of our method compared with other
state of the art dedicated methods on real rain removal
dataset [2] in Fig. 1. From the figure, one can see that our
results can also remove rain streaks and rain veiling effects
at the same time. In the second row of Fig. 1, although
HRGAN [2] can recover the tree leaves on the branch, the
restored tree leaves are incomplete and blur. However, in
our result, we can recover the complete tree leaves as well
as remove the strong rain streaks and rain veils.

2. Real Snow Results Comparison

We show the results of our method compared with other
state of the art dedicated desnow methods on snow removal
task in Fig. 3. The real snow data are from DesnowNet
[5]. One can observe from the figure that [5]’s results have
some tiny snow flakes left on the image, but ours result can
remove most of the snow flakes.

3. More Raindrop Results Comparison

We also demonstrate more real raindrop removal re-
sults in Fig. 4 in addition to the results in our main paper.
Since most of the method have aleady achieved quite good
restoration results on this datasets, we have amplified the
details in the red boxes in each image for better compari-
son. One can observe that although our method is trained
on multiple domain bad weather data, our results can still
outperforms the state of the art dedicated methods.

4. Ablation Study on Search Ops

In this ablation study, we examined the effectiveness of
each component in the Fusion Search stage as shown in Ta-
ble 1. Here, we can see that if we remove the residue op-
eration and deveiling operation, the network performance
reduces more compared with our full architecture variant in
terms of PSNR. This is because these two operations have
embedded the rain and rain veiling effect model, therefore,

Table 1: Ablation Study on our Fusion Search component
in the proposed network. The evaluation is conducted on
rain and fog removal tasks.

Method Rainfog dataset [2]
Metric PSNR SSIM

Concatenation 21.58 0.834
No deveiling operation 20.97 0.817
No residue operation 20.82 0.832

No self-attention operation 21.36 0.863
Dedicated Encoders 21.47 0.828

Full Architecture 21.92 0.865

the features extracted by fusion search part is more invari-
ant to rain. To further study the advantage of fusion search,
we also develop a multiple encoder network, each of which
embeds the proposed operation according to the task, i.e.
the rainfognet is contains decomposition operation, residue
operation and deveiling operation. The performance of this
network is also shown in Table 1 as “dedicated encoders”.

5. Study on clean input

In this paper, our objective is to design a solution that can
work under multiple different weather environments with-
out using extra weather detection. To that end, it is impor-
tant to show that our network is still able to work under
good weather condition so that a weather classifier is not
necessary. In this case, we have tested clean images from
multiple different scenes as shown in Fig. 2

6. Network Structure

We demonstrate the detailed architecture in Table 2. For
the RainFogNet, we have adopted the chromatic pyramid in
[3] denoted as “chromatic layer”.
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(a) input (b) RESCAN [4] (c) HRGAN [2] (d) Ours

Figure 1: Raindrop removal results of our method compared with state of the art raindrop removal dedicated methods. (Zoom
in to the red box to see details.)

(a) Input (b) Ours (c) Input (d) Ours

Figure 2: Our results of clean input images. The PSNR value of these 4 image pairs are : 33.87dB, 34.44dB, 34.27dB,
33.84dB.
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(a) input (b) DetailsNet [1] (c) DesnowNet [5] (d) Ours

Figure 3: Snow removal results of our method compared with state of the art snow removal dedicated methods. (Zoom in to
see the details.)

(a) input (b) AttentGAN[6] (c) Quan et al. [7] (d) Ours (e) Ground Truth

Figure 4: Raindrop removal results of our method compared with state of the art raindrop removal dedicated methods. (Zoom
in to the red box to see details.)
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Table 2: The detailed architecture of the proposed all-in-one network.

Layers Ourput Size RainFogNet SnowNet RaindropNet
Conv2d 224 × 224 5×5 Chromatic Layer, stride 1 5x5 conv, stride 1
Conv2d 112 × 112 3×3 Chromatic Layer, stride 2 3x3 conv, stride 2
Conv2d 112 × 112 3×3 Chromatic Layer, stride 1 3x3 conv, stride 1
Conv2d 56 × 56 3×3 Chromatic Layer, stride 2 3x3 conv, stride 2
Conv2d 56 × 56 3×3 Chromatic Layer, stride 1 ×2 [3x3 conv, stride 1]× 2

Fusion 56 × 56 [ResOp,DeveilOp,SelfAttnOp,DecompOp,
56 × 56 Depthwise-separable Conv, Dilated Conv, Skip]

Fusion 28 × 28 [ResOp,DeveilOp,SelfAttnOp,DecompOp,
28 × 28 Depthwise-separable Conv, Dilated Conv, Skip]

Deconv2d 56 × 56 4×4 deconv, stride 2
Conv2d 56 × 56 3×3 conv, stride 1

Deconv2d 112 × 112 4×4 deconv, stride 2
Conv2d 112 × 112 3×3 conv, stride 1

Deconv2d 224 × 224 3×3 deconv, stride 2
Conv2d (Output) 224 × 224 3×3 conv, stride 1
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