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Abstract. The task of classifying X-ray data is a problem of both the-
oretical and clinical interest. Whilst supervised deep learning methods
rely upon huge amounts of labelled data, the critical problem of achiev-
ing a good classification accuracy when an extremely small amount of
labelled data is available has yet to be tackled. In this work, we introduce
a novel semi-supervised framework for X-ray classification which is based
on a graph-based optimisation model. To the best of our knowledge, this
is the first method that exploits graph-based semi-supervised learning
for X-ray data classification. Furthermore, we introduce a new multi-
class classification functional with carefully selected class priors which
allows for a smooth solution that strengthens the synergy between the
limited number of labels and the huge amount of unlabelled data. We
demonstrate, through a set of numerical and visual experiments, that our
method produces highly competitive results on the ChestX-ray14 data
set whilst drastically reducing the need for annotated data.
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1 Introduction

The Chest X-Ray (CXR) is the most commonly performed x-ray examination
which captures details of the lungs, heart, bones and blood vessels. CXRs play a
critical role in diagnosing and monitoring conditions such as pneumonia, heart
problems and lung cancer. However, it remains one of the most complex imag-
ing studies to interpret [10]. The effectiveness and accuracy of the interpretation
heavily relies on the radiologist’s expertise and still there is a substantial clini-
cal error on the outcome [4]. Furthermore, the requirement of human expertise
increases the finical cost and time required for evaluation. Therefore, there is a
clear need for fast automated evaluations of CXRs.
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CXR classification has been widely addressed by the community, yet it re-
mains an open problem. Early developments were based in handcrafted classi-
fication e.g. [16]. However, this set of algorithmic approaches require particular
modelling hypothesis to be met (e.g. texture, geometry, intensity), which may
not be feasible to fulfill in practice. Due to the incredible results produced by
deep learning in the field of computer vision, there has been a rush to apply deep
learning architectures to the classification of CXRs [19,17,1], which have shown
promising results. The majority of these methods utilise deep convolutional neu-
ral network with architectures such as ResNet [12], due to the success of these
architectures in computer vision classification tasks. Several training methods
have been considered including: pre-trained networks, fine tuned networks and
networks trained from scratch on X-ray data e.g. [19,17,1].

However, a major drawback of these techniques is the high dependence on
a large corpus of labelled data. Particularly in the medical domain, this might
be a strong assumption for a solution, as annotated data contains strong human
bias. Although there has been a huge effort in the community to mitigate this
drawback by providing datasets such as ChestX-ray14, the has annotations but
is far from being a definite expression of ground truth [14]. Therefore, by using
supervised learning techniques one allows the labelling error and uncertainty to
adversely effect the classification output of our machine learn framework. To
tackle both the effect of human bias and the limited amount of labelled data, we
propose using the power of semi-supervised learning and graph representations.

Our Contributions. We propose a novel semi-supervised graph-based frame-
work called GraphXNET. Our contributions are: 1) a new multi-class classifica-
tion functional with carefully chosen class priors. Our framework is based on the
normalised and non-smooth p = 1 Laplacian. 2) We demonstrate that our novel
framework learns to accurately classify CXRs, with a performance comparable
to state-of-the-art deep learning techniques, whilst using an extremely smaller
amount of labelled data. 3) This work also represents the first time that graph
representations have been used for X-ray classification.

2 GraphXNET Framework for X-Ray Data Classification.

Our approach is motivated by a central problem in medical imaging which is
the lack of reliable quality annotated data. Although, transfer learning [1] or
Generative Adversarial Networks [15] somewhat mitigate this problem, they fail
to account for the mismatch between expert annotation and ground truth anno-
tation created by human bias and uncertainty. With this motivation in mind, we
propose, for the first time, using a semi-supervised framework, call GraphXNET

(see Fig. 1 for illustration).
Data Representation with Graphs. Although there are different methods

for representing data including conventional grid form. In this work, we motivate
the use of graph data representations as follows. Firstly, graphs are a natural
representation for groups of images where each node represents an individual
image. Secondly, given that graph based methods seek to find smooth solutions to
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Fig. 1: Overview of our proposed GraphXNET method. We exploit both labeled
and unlabeled data to produce high classification accuracy. In this framework,
we aim to propagate labels for the unlabeled data with minimal supervision.

the created embedding, they are able to correct for initially mislabelled samples.
Lastly, graph has strong and mathematical properties such as sparseness which
allows for fast computation.

We represent a given dataset as an undirected weighted graph G = (V, E ,W )
compromising a set of n nodes V which are connected by a set of edges E with
weights wij = S(i, j) ≥ 0 that correspond to some similarity measure S between
the features of nodes i ∈ V and j ∈ V, wij = 0 if (i, j) /∈ E ; and functions u ∈ Rn.
Our setting is based on the normalised graph p-Laplacian, which reads:

∆p(u) =
∑
i,j

wij

∥∥∥∥∥ ui

d
1/p
i

− uj

d
1/p
j

∥∥∥∥∥
p

, with p ≥ 1 and di =
∑
j

wij > 0, (1)

where di is the degree of node i. The eigenfunctions of the graph Laplacian op-
erator give interesting understanding of the substructures of the graph. Eigen-
functions of a normalised graph Laplacian for p = 2 have been successfully used
in different applications such as in [2,7,8].

Learning to Classify under Extreme Minimal Supervision. However,
unlike those works, our framework has a different aim which is to solely ob-
tain classification estimates on the unlabeled samples. That is, to perform a
node classification task on G with L available classes, given an extremely small
amount of labelled nodes xi. More precisely, given a small amount of labeled
data {(xi, yi)}li=1 with provided labels L = {1, .., L} and {yi}li=1 ∈ L and a large
amount of unlabelled data {xk}nk=l+1, we seek to infer a function f : Xn 7→ Yn

such that f gets a good estimate for {xk}l+nk=l+1.
Although several works have explored this learning style, either from a pure

machine learning perspective e.g.[20] or a medical imaging perspective e.g. [18],
these methods seek to only approximate p → 1 in the graph Laplacian. How-
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ever, recent developments on machine learning showed that the use of the unnor-
malised (i.e. without the re-scaling by the node degrees in (1)) and non smooth
p = 1 Laplacian, related to total variation, can achieve better performance [5].

To mitigate these current drawbacks in the literature, we propose a novel
semi-supervised framework, GraphXNET, based on the normalised and non
smooth p = 1 Laplacian in (1). The function can then be rewritten as: ∆1(u) =
|WD−1u|, where W is the weight matrix wij and D the diagonal matrix contain-
ing the degrees di. To this end, we generalise the unsupervised binary normalised
graph method of [9] to a semi-supervised multi-class graph approach. To this aim,
our algorithmic approach is as follows.

For each class, k = 1 · · ·L, we consider a variable uk that has values for
all nodes of the graph. For all unlabeled nodes i > l, the L variables are then
coupled with the constraints that for all nodes i:

∑L
k=1 u

k
i = 0, ∀i > l. This

simple coupling indeed leads to faster projection algorithms than simplex [3,11]
or non convex orthogonality constraints between uk’s [8]. We assume that a set
of annotated nodes Ik ⊂ {1 · · · l} are available for each class k: yi = k ∈ L for
all i ∈ Ik. Taking a small parameter ε > 0, we therefore constrain that:{

uki ≥ ε if i ∈ Ik
uk
′

i ≤ −ε if i ∈ Ik and k′ 6= k.
(2)

This information is then used in an iterative PDE process with a time parameter

t, in which we seek to minimise the sum of normalised ratios
∑
k
∆1(u

k)
|uk| . Denoting

u = [u1, · · ·uL] and a time step ∆t > 0. Then formally, we seek to minimise:

u(t+1) = argmin
u

‖u− u(t)‖2

2∆t
+

L∑
k=1

(
∆1(uk)− ∆1(uk,(t))

|uk,(t)|
〈sign(uk,(t)), uk〉

)
,

(3)
under the set of previously described coupling and data (2) constraints. Following
[13,9], a final shifting uk,(t+1) = uk,(t+1) −median(uk,(t+1)) and a normalisation
u(t+1) = u(t+1)/||u(t+1)|| are necessary at the end of each iteration to prevent
from converging to trivial solutions.

When a unique uk is considered, the scheme iteratively decreases the ratio
∆1(u

k,(t))
|uk,(t)| since 〈sign(uk,(t)), uk,(t)〉 = |uk,(t)|, so that the solution uk,(t+1) of (3)

necessarily satisfies:

∆1(uk,(t+1)) ≤ ∆1(uk,(t))

|uk,(t)|
〈sign(uk,(t)), uk,(t+1)〉 ≤ ∆1(uk,(t))

|uk,(t)|
|uk,(t+1)|. (4)

As noticed in [9], the scheme makes uk,(t) converge to a bivalued function that
naturally segment the graph. As L variables are coupled, the final labelling of a
node i is chosen from the variable uki with the highest value: yi = argmax

k
uki .

Optimisation Scheme. For each time step t, the problem (3) is solved at
successive time steps using the accelerated primal dual algorithm of [6]. Denoting
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as v = u(t) the current estimation and initialising u0 = ũ0 = v, zk0 = WD−1uk0 ,
the algorithm to obtain u(t+1) with an iterative sequence u` indexed by ` reads:

zk`+1 = zk` + σ`WD−1ũk`

zk`+1 =
zk`+1

max(1,|zk`+1|)

uk`+1 =
uk`+τ`∆t

(
∆1(vk)

|vk|
sign(vk)+D−1Wzk`+1

)
1+τ`∆t

uk`+1 = ProjC(uk`+1)

γ` = 1/
√

1 + τ`/∆t, τ`+1 = τ`γ`, σ`+1 = σ`/γ`
ũk`+1 = uk + γ`(ũ

k+1 − uk),

where the projection onto the set of constraints C combining the coupled con-
straint and (2) reads pointwise:

ProjC(uki ) =


max(uki , ε) if i ∈ Ik
min(uki ,−ε) if i ∈ Ik′ and k′ 6= k.

uki − 1
L

∑
k′ u

k′

i if i > l.

(5)

For positive parameters σ0 and τ0 satisfying στ < 4, such process makes u`
converges to u(t+1), the solution of (3).

3 Experimental Results

This section is devoted to describe in detail the set of experiments that we
conducted to validate our GraphXNET approach.

Data Description. We evaluate our approach using the ChestX-ray14 [17]
dataset, which is composed of 112, 120 frontal chest view X-ray with size of 1024×
1024. The dataset is composed of 14 classes (pathologies). All measurements were
taken from this dataset.

Evaluation Methodology. We validate our theory as follows. Firstly, we visu-
alise the graphical construction and classification tasks of our graph-based semi-
supervised framework. Secondly, the main part of the evaluation is to compare
our GraphXNET to the state-of-the-art methods on X-ray classification. We com-
pare ours against two deep learning techniques: WANG17 [17] and YAO18 [19].
To evaluate the classifier output quality of the compared approaches, we per-
formed a ROC analysis using the area under the curve (AUC) per pathology
along with their average. Finally, beside the official split, we perform a compar-
ison with random partitions on ChestX-ray8 using WANG17 [17] as baseline.

Results and Discussion. Firstly, we start by giving some insight into our
approach with some visualisations shown in Fig. 2. The left side of the figure
shows two graphs in which the first one illustrates the initial state of the graph
created after computing the feature distances between the given X-ray data while
the second one shows the graph after computing (3). The colours on the graph
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Fig. 2: Graphical Construction and Classification: (A) shows the graphical rep-
resentation of the ChestX-ray14 dataset, where in the final classified graph, each
colour represents a different class and (B) demonstrates examples of correct
classifications produced by our framework.
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A
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Pathology Wang17 [17] Yao18[19] GraphXNET

Cardiomegaly 0.81 0.856 0.8799

Emphysema 0.833 0.843 0.8407

Edema 0.805 0.806 0.802

Hernia 0.872 0.775 0.8722

Pneumothorax 0.799 0.805 0.837

Effusion 0.759 0.806 0.792

Mass 0.693 0.777 0.809

Fibrosis 0.786 0.743 0.8034

Atelectasis 0.7 0.733 0.7189

Consolidation 0.703 0.711 0.7336

Pleural 0.684 0.724 0.757

Thicken 0.669 0.724 0.7205

Nodule 0.658 0.684 0.7113

Pneumonia 0.661 0.673 0.7664

Average AUC 0.7451 0.7614 0.7888

Table 1: Comparison of the classification accuracy of GraphXNET against two
state-of-the-art deep learning method, Wang et al. [17] and Yao et al. [19]. Here
we report the AUC measure over all 14 pathology classes along with the overall
average. Plots on the left side highlight the sensitivity of the AUC for each class
when changing the data partition of the data set (using 15% for training)

indicates an images belonging to a particular class. The right side shows few
sample graph label output, that were correctly classified, of our approach.

To evaluate the performance of our approach, we compared it against state
of the art Deep Learning approaches, namely WANG17 [17] and YAO18 [19].
To the best of our knowledge, there are no semi-supervised learning method,
for X-ray classification, that we can compare against. Therefore, we set as our
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0.48
0.6
0.72
0.84AUC:

GraphXNET

Wang et al.

Wang17 [17]

%Labeled 70%

AUC 0.548

GraphXNET

%Labeled 2% 5% 10% 15% 20%

AUC 0.53 0.58 0.63 0.68 0.78

Table 2: Comparison of the classification accuracy of GraphXNET against a
state-of-the-art deep learning method by Wang et al. [17]. We give the average
AUC measure over all eight classes using different amounts of labelled data.
Additionally, we give a class by class comparison between the two methods using
70% of the labelled data for the Wang method and 20% for GraphXNET.

baseline WANG17 and YAO18. Table 1 shows the AUC results of the compared
approaches where overall our approach outperformed the other methods across
most pathology. Even though YAO18 performs better in some classes, a clear
advantage of our approach over these two baselines is that while their approach
rely in a huge percentage of data, 70%, we were able to report a better average
AUC result with only 20% of the data.

Moreover, due to the semi-supervised nature of the GraphXNET framework,
the classification output is very stable with respect to changes in the partition
of the dataset. In the plots next to Table 1, we tested the AUC of both the
GraphXNET framework and WANG17 [17] using three different random data
partitions, including the partition suggested by Wang. The Wang method is very
sensitive to changes in the partition due to the face that supervised methods are
heavily reliant on the training set being representative. However, there is minimal
change in the performance of GraphXNET over the three different partitions as
the underlying graphical representation is invariant to the partition.

For more detailed analysis of this dependency on the portioning and to further
support the advantage of our GraphXNET, in Table 2, we compare the AUC
produced by GraphXNET against WANG17 using a random split over ChestX-
ray8. We find that GraphXNET produces a more accurate classification using 5%
of the data labels than the WANG17 method does using 70% of the data labels.
Furthermore, as we feed GraphXNET more of the data labels, the classification
accuracy increases and becomes competitive against other the deep learning
framework of that YAO18 [19] whilst using a far smaller amount of data labels.
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4 Conclusion

In this work, we tackled the problem of X-ray classification and introduced a
novel semi-supervised framework based on a graph-based optimisation model,
which is the first method that exploits graph-based semi-supervised learning
for X-ray data classification. We also introduced a new multi-class classification
functional with carefully selected class priors that allows for a smooth solution.
We demonstrated that our method produces highly competitive results on the
ChestX-ray14 data set whilst drastically reducing the need for annotated data.
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